Процитировано сообщение: obscure от 16.04.06 :: 21:22:16:я форум смотрела(
http://www.rastaman.tales.ru/), нашла это:
Филосов Зенон Элейский:
Его теория: Смысл ее состоит примерно в следующем: если человек должен пробежать 100 метров, то он сначала должен пробежать половину расстояния, то есть 50 метров, затем половину оставшегося расстояния, то есть 25 метров, затем половину оставшегося, то есть 12.5 метров, и так далее до бесконечности. Человек должен пробежать бесконечный ряд конечных расстояний. Поскольку бесконечная последовательность по определению не имеет конца, он так никогда и не преодолеет это расстояние.
Интересно... Чё думаете нащёт этого высказывания?)))) Вродь бред такой, но...
Древние греки придумали множество парадоксов о времени и о движении. Парадокс Зенона о бегуне ("стадий") принадлежит к числу наиболее известных.
Бегун в парадоксе Зенона рассуждал следующим образом.
Бегун. Прежде чем я добегу до финиша, мне необходимо пробежать половину дистанции, затем половину оставшейся половины, то есть 3/4 всей дистанции.
Бегун. Прежде чем я преодолею последнюю четверть дистанции, мне необходимо пробежать ее половину. И так всякий раз! Прежде чем преодолеть какое-то расстояние, мне необходимо пробежать половину его. Этим половинам не будет конца! Я никогда не доберусь до финиша!
Предположим, что на преодоление половины каждого расстояния бегун затрачивает 1 мин. На графике зависимости времени от пути видно, что бегун приближается к финишу, но так и не достигает его. Правильны ли рассуждения бегуна?
Нет, неправильны: бегун не затрачивает по 1 мин на преодоление половины каждого отрезка. Каждую половину очередного отрезка он пробегает за вдвое меньшее время, чем половину предыдущего отрезка. Бегун достигнет финиша через 2 мин после старта, хотя ему придется за эти 2 мин преодолеть бесконечно много половин соответствующих отрезков дистанции.
Зенону принадлежит и другой, не менее знаменитый парадокс об Ахилле и черепахе. Быстроногий Ахилл хочет поймать черепаху, которая находится на расстоянии 1 км от него.
К тому времени, когда Ахилл добегает до того места, где первоначально находилась черепаха, та успевает уползти вперед на 10 м.
За то время, которое требуется Ахиллу, чтобы пробежать эти 10 м, черепаха снова успевает уползти на какое-то расстояние.
Черепаха. Где тебе догнать меня, старина! Каждый раз, когда ты добежишь до того места, где я была, я успею уползти на какое-то расстояние вперед, хоть на толщину волоса!
Зенон, разумеется, знал, что Ахилл мог бы поймать черепаху. Свои парадоксы Зенон придумал для того, чтобы показать, к каким парадоксальным следствиям приводит представление о неделимых -- "атомах" -- пространства и времени, имеющих сколь угодно малые, по конечные размеры.